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Abstract

Many-valued models, besides providing a natural semantical interpretation for
several non-classical logics, constitute a very sharp tool for investigating and un-
derstanding meta-logical properties in general. Although open to debates from
the philosophical perspective, seen from the mathematical viewpoint many-valued
matrices and algebras are perfectly well-defined mathematical objects with several
attractive properties. This tutorial intends to review the main results, techniques
and methods concerning the application of the many-valued approach to logic as a
whole.

1 On many-valued thinking

The technique of using finite models defined by means of tables (which turns out to be
finite algebras) is arguably older than many-valued logics themselves, and has provided
much information not only about non-classical systems as relevant logics, linear logic,
intuitionistic logics and paraconsistent logics, but also about fragments of classical
logic. The problem of enumerating such algebras satisfying given constraints is an
interesting general problem and has received attention from several different areas.

In this tutorial we present an elementary but general approach on small finite mod-
els, showing their relevance and reviewing some elementary methods and techniques
on their uses.

There are many significant names in the history of logic that are connected with
the idea of many-valuedness, for different reasons. The Polish logician and philoso-
pher Jan Łukasiewicz was born in Łvov. His philosophical work developed around
on mathematical logic; Łukasiewicz dedicated much attention to many-valued logics,
including his own hierarchy of many-valued propositional calculus, considered to be
the first non-classical logical calculus. He is also responsible for an elegant axiomati-
zations of classical propositional logic; it has just three axioms and is one of the most
used axiomatizations today:
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(P1-1) A→ (B→ A)

(P1-2) (A→ (B→ C))→ ((A→ B)→ (A→ C))

(P1-3) (¬A→ ¬B)→ (B→ A)

andmodus ponensis the only rule.
Although we may credit Łukasiewicz for having introduced a third truth-value in

Philosophy, relevant contribution of truth -values in Mathematics should be credited
to Paul Bernays and Emil Post, although part of the material produced in the Hilbert
school of G̈ottingen around 1920 (notably Bernays’s work) remained unpublished (cf.
[Zac99]).

The method of using many-valued matrices for independence proofs, a central point
in this tutorial, was proposed for the first time by Bernays in hisHabilitationsschrift
(Bernays 1918), and was also discovered independently by Łukasiewicz and Tarski.
Among his several contributions to logic, Bernays introduced the first three- and four-
valued models. Bernays’s approach to proving independence of the axioms involved
methods that can be called many-valued logics. For learning more about his role in this
aspect see [Zac99] and [Pec95].

For instance, Heyting (1930) took the ideas of Bernays into consideration when
proving the independence of his axiom system for intuitionistic logic, and Gödel (1932)
was influenced by such ideas when he defined a sequence of sentences independent of
intuitionistic propositional calculus; the resulting many-valued logics are now known
as G̈odel logics.

The many-valued approach is also important for distinguishing the cases whereno
finite-valued semantical interpretation is possible. This is the case of the work of Gödel
(cf.[G3̈2]) in proving that there is no finite many-valued semantics for intuitionistic
logic, and of James Dugundji (cf. [Dug40]) in proving that there is no finite many-
valued semantics for modal logics. More recently, this was also the case (cf. [CCM])
of proofs that several paraconsistent logics are also uncharacterizable by finitely-valued
semantics.

Along with Łukasiewicz and Bernays, Charles Pierce and Emil Post are usually
credited with the truth-table method for determining propositional validity. Even Lud-
wig Wittgenstein is credited for having the idea of organizing the truth-values in table
format!

Emil Leon Post was a Polish-American mathematician and logician born in a Jew-
ish family in Augustow,Poland, and died in New York City, USA.

In 1936 Post proposed an abstract computer model now called “Post machines”,
independently of Alan Turing’s model known as “ Turing machines”.

Emil L. Post’s dissertation of 1920 provided metatheoretical results about the propo-
sitional calculus. It contains an explicit account of the truth table method, Among them
are, for instance, that the truth table method provides a decision procedure for deriv-
ability. Post’s paper contains a number of other contributions. These are, on the one
hand, a discussion of truth-functional completeness, and on the other, an independent
introduction of many-valued logics.

There are various reasons one may desire to introduce more than two values:
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• Reasoning with truth-value gaps

In 1938 Ł ukasiewicz delivered a lecture to the Circle of Scientists in Warsaw,
Genesis of three-valued logic. Ł ukasiewicz considered the discovery of many-
valued logics as important as of non-Euclidean geometry, and thought that they
make possible “other ways of speaking of reality”. The fundamental idea in the
birth of three-valued logic was adding a third value to the matrix of bivalued
logic, having in mind an intuitive interpretation of this new value.

The interpretation Ł ukasiewicz had in mind was linked with AristotlesPeri-
hermeneias and sentences on future contingent facts, that were in his view neither
true nor false. Future contingents. Aristotle raised the possibility that sentences
about the future are not currently either true or false.

Sentences with false presuppositions, such as ”The present king of France is
bald” can be considered as neither true nor false; on may consider the they have
rather a false presupposition, as it is the case that France has presently no kings.
However, it may be interesting to treat these cases by having a third truth-value
for ”neither true nor false”.

• Reasoning with truth-value gluts

We may also think about the possibility that some sentences can be both true and
false, as it is the case of some paradoxes. Consider the following version of the
”liar” paradox: “This sentence is false” . Suppose that it is true. Then, since it
says it is false, it must be false. But, on the other hand, if it is false, then what
it says (namely that it is false) is true. So it is true if and only if it is false. A
possible reaction to a paradox like this is to add a third truth-value for “both true
and false”.

A philosophical application of three-valued logics to the discussion of paradoxes
was proposed by the Russian logician Bochvar already in 1939 (cf. [Boc39]),
and a useful mathematical application to partial computable functions and rela-
tions by the North-American logician Stephen Cole Kleene in his famous book
[Kle50]. Later Kleene’s connectives also became philosophically interesting as
a technical tool to determine fixed points in the revision theory of truth initiated
by Saul Kripke in 1975.

• Reasoning with epistemological possibilities

Sometimes we may want to add a third and fourth truth values for “unknown”,
so that the three truth-values would be “known to be true,” “known to be false”,
“unknown” or “neither”, and “ both”. This is the case, for example, of the well-
known case of the four-valued semantics introduced by Nuel Belnap in [Bel77]
for expressing deductive processes connected to databases It is well-known that
databases may contain explicit or implicit contradictions, which may come from
equally reliable sources. The use of a classical deductive process would not be
appropriate in the presence of a contradiction, since any arbitrary information
would classically derivable. These four-valued possibilities would explain “how
a computer should think”, and constitute a first paraconsistent approach to data-
bases, an active area of research nowadays (see also [CMdA00]).
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This new way of looking to logico-philosophical scenario was not free of discus-
sion, however. Stanisław Lesniewski argued that a third logical value never appears in
scientific argumentation, and considered the third value as no sense, because “no one
had been able until now to give to the symbol 2 introduced in a three-valued matrix any
intelligible sense, which may ground this or that realistic interpretation of this logic”. .

This type of criticism, however, blaming pure science for the lack of use of many-
valuedness may easily lose force when new scientific objects come into light. The
Princeton University Bicentennial Conference on Problems of Mathematics took place
in December, 1946, and was the first major international conference gathering logi-
cians and mathematicians after World War II. The session on Mathematical Logic had
the participation of Alonzo Church, Alfred Tarski and Alan Rosser, among other big
names. Rosser gave a talk on the possibilities of Birkhoff and von Neumann sugges-
tions of using many-valued logics as foundation for quantum mechanics, what is the
subject of a strong research effort today. What this shows is that, independent of any
intrinsic many-valuedness character attached to scientific objects, it may beconvenient
to look to such objects from the many-valued viewpoint.

This tutorial is not only about many-valued logics, but about the uses of the many-
valued approach to mathematical objects and concepts.

Ł ukasiewicz, in 1929, recognized the important role of many-valued models in
logic: “Actually, it is the method of proving the independence of propositions in the
theory of deduction which has occasioned our research into many-valued logics” (cf.
[Lu29]).

We are interested here in this basic role of many-valuedness in providing new the-
oretical models, as the ones used in independence proofs which usually use logical
matrices with more than two truth-values. In such cases, we will not be necessarily
interested is in an intuitive understanding of the truth-values, but in their mathematical
role of providing new, not-yet-thought, possible interpretations of a theory.

In this sense, such models test the limits of the theories, and constitute beautiful
models with rich potential.

This tutorial is organized into the following topics:

• On many-valued thinking

• Some three-valued Logics

• Independence of axioms ofCPL

• An incapacity of two-valued and three-valued models

• The systemQ of Mostowski-Robinson: models for Arithmetic

• Proving the weakness of the systemQ

• Tarski’s High School Problem and exotic identities

• The Finite Basis Problem and weird small models

• Why modal logics are not many-valued
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• Why intuitionistic logic is not many-valued

• Why certain paraconsistent logics are not many-valued

• Possible-translations semantics

2 Some three-valued logics

Instead of starting with classical logic, we will start by discussing some many-valued
logics. As examples of many-valued models, we show here some examples of three-
valued tables that characterize some important three-valued logics. Although there are
literally hundreds of three-valued logics (see for example [Got01]),we just treat here
four particular cases: the historically relevant Łukasiewicz’s and Gödel’s three-valued
logics, the paraconsistent three-valued systemP1 and the paracomplete (or weakly-
intuitionistic) three-valued systemI1 .

By a signaturewe mean a collection of logical operators (connectives). Given a
logic L defined by a set of axioms and rules,Γ `L α means, in general, that there is
proof in L of α from the premises inΓ. The subscript may be omitted when obvious
from the context. IfΓ is empty we say thatα is atheorem.

The propositional three-valued logic known asL3 was first proposed by Jan Ł ukasiewicz
in 1920 (though his results were published later, by that time he was already concerned
with use of models to show consistency, cf. [Lu03]). An axiomatization ofL3 was
given by M. Wajsberg in 1931 by using implication and negation as primitive connec-
tives (Alan Rose proposed in 1951 several other alternative axiomatizations forL3):

(L-1) A→ (B→ A)

(L-2) (A→ B)→ (B→ C)→ (A→ C)

(L-3) (¬A→ ¬B)→ (B→ A)

(L-4) (A→ ¬B)→ B)→ B)

The following rules of inference were also assumed:
Substitution: Any well-formed formula may be substituted for a propositional vari-

able in all its occurrences in a theorem or axiom.
Modus Ponens (MP): IfA andA→ B are theorems, thenB is also a theorem.
In the famous Polish (prefix) notation, introduced by the same Łukasiewicz, these

axioms are written asCpCqp, CCpqCCqrCpr, CCNpNqCqpandCCCpNppp.
The following matrices, reading the truth-valuesT, U andF as “true”, “undeter-

mined” and “false” and considering onlyT as a distinguished value, give a sound and
complete semantical interpretation forL3, in the sense that all theorems receive value
T,and no other formulas receive valueT.

T U F
P1

¬ F U T

P1

→ T U F
T T U F
U T T U
F T T T
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The three-valued systemP1 was introduced in [Set73] in order to obtain the sim-
plest possible paraconsistent calculus.P1 is a subsystem ofCPC, and is maximal in
the sense that adding to its axioms any classical tautology which is not aP1-tautology
the resulting system collapses toCPC.

Axiomatically,P1is characterized in the following way, using the language ofCPC:1

(P1-1) A→ (B→ A)

(P1-2) (A→ (B→ C))→ ((A→ B)→ (A→ C))

(P1-3) (¬A→ ¬B)→ ((¬A→ ¬¬B)→ A)

(P1-4) (A→ B)→ ¬¬(A→ B)

andModus Ponensis the only rule. It can be proved (cf. [Set73]) to be complete
with respect to the following matrices, where→ and¬ are primitive, and∧ and∨ are
defined. The truth values areT,T∗, F, of whichT,T∗ are distinguished. Intuitively,T
andF mean plain truth and falsity, whereasT∗ can be understood as “truth by default”,
or ”by lack of evidence to the contrary”.

T T∗ F
P1

¬ F T T

P1

→ T T∗ F
T T T F
T∗ T T F
F T T T

The primitive negation ofP1 is paraconsistent (thus, weak with respect to implica-
tion) in the sense that, for example,A→ (¬A→ B) is not aP1 tautology, as can easily
be checked from the given matrices assigning the truth-valueT∗ to A andF to B. It is
possible, however, to define inP1 a strong negation¬A which recovers the full power
of classical negation:∼ A =de f ¬(¬A→ A), which gives the following table:

T T∗ F
∼ F F T

Using the strong negation, we can also define conjunctionA
P1

∧B and disjunction

A
P1

∨B in P1 as follows:

A
P1

∧B =de f ¬(A→∼ B)

A
P1

∨B =de f (∼ A→ B)

P1

∧ T T∗ F
T T T F
T∗ T T F
F F F F

P1

∨ T T∗ F
T T T T
T∗ T T T
F T T F

1In the formulation of [Set73] there exists an additional axiom which can be deduced from the ones given
here.
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The truth-table of the consistency connective◦ can be defined inP1 by ◦α def
== ¬¬α∨

¬(α ∧ α). The logicP1 is controllably explosive with respect to arbitrary non-atomic
formulas in the sense that the paraconsistent behavior obtains only for atomic formulas:
α,¬α � β, for arbitrary non-atomicα. Moreover,� ◦α also holds for non-atomicα.

The systemI1 was introduced in [SC95] as a three-valued dual counterpart of the
systemP1. The truth values ofI1 areT, F∗, F, of which onlyT is distinguished. In-
tuitively, againT andF mean plain truth and falsity, whereasF∗ can be understood as
”false by default”, or ”by lack of positive evidence”.

The systemI1, instead of paraconsistent, possess an intuitionistic character, in the
sense that, for example,¬¬A → A is not anI1 tautology, as can be checked from the
matrices below, assigning the truth-valueF∗ to A. Moreover, inI1 all the axioms of the
well-known Heyting system for intuitionistic logic are valid, and the law of excluded
middle is not valid (for the disjunction defined below).

The axioms ofI1 (in the same language ofCPC, havingModus Ponensas the only
rule) are:

Il-1) A→ (B→ A)

(Il-2) (A→ (B→ C))→ ((A→ B)→ (A→ C))

(Il-3) (¬¬A→ ¬B)→ ((¬¬A→ B)→ ¬A)

(Il-4) ¬¬(A→ B)→ (A→ B)

and it can be shown (cf. [SC95]) to be complete with respect to the matrices below,
where→ and¬ are primitive connectives. As mentioned before, the truth values are
T, F∗, F, andT is the only distinguished value:

T F∗ F
I1

¬ F F T

I1

→ T F∗ F
T T F F
F∗ T T T
F T T T

I1 can be proved to be maximal in a sense similar to the case ofP1, and it is possible
to define inI1 a weak negation' A which has all the properties of classical negation:
¬̃A =de f A→ ¬A giving the following table:

T F∗ F
' F T T

We can also define conjunctionA
I1

∧B and disjunctionA
I1

∨B for this system in the
following way:

A
P1

∧B =de f ¬(A→' B)

A
P1

∨B =de f (' A→ B)
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I1

∧ T F∗ F
T T F F
F∗ F F F
F F F F

I1

∨ T F∗ F
T T T T
F∗ T F F
F T F F

The notion of society semantics as a way to provide new semantical interpretations
for many-valued logics by means of collections of two-valued semantics was intro-
duced in [CLM99]. It can be shown that, under certain conditions, the behaviour of
certain biassertive societies (i.e., societies with two agents) is essentially equivalent to
three-valued logics. In particular, closed biassertive societies are equivalent toI1, and
open biassertive societies are equivalent toP1. For details, see [CLM99].

3 Independence of axioms of CPL

Let the signatureΣ+ denote the signatureΣ without the symbol¬, andFor+ be the cor-
responding formulas; Positive classical logicCPL+ can be axiomatized in the signature
Σ+ by the following axioms and (MP):

Positive classical logic CPL+

Axiom schemas:

(Ax1) α→ (β→ α)

(Ax2) (α→ β)→ ((α→ (β→ γ))→ (α→ γ))

(Ax3) α→ (β→ (α ∧ β))

(Ax4) (α ∧ β)→ α

(Ax5) (α ∧ β)→ β

(Ax6) α→ (α ∨ β)

(Ax7) β→ (α ∨ β)

(Ax8) (α→ γ)→ ((β→ γ)→ ((α ∨ β)→ γ))

(Ax9) α ∨ (α→ β)

Inference rule:

(MP)
α, α→ β

β

Classical Propositional LogicCPLis obtained fromCPL+ by adding two contro-
versial axioms: the law of excluded middle:

(exc) α ∨ ¬α.

, and the law of explosion:

(exp) α→ (¬α→ β)
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).
The following short axiomatization ofCPL based on negation and implication,

with Modus Ponensas the only inference rule is given in [Eps00], Chapter II.L (it was
also considered before, called Bigos-Kalmár axioms in [Fla78]):

Short axiomatization

Modus ponens(MP):
A, A→ B

B

plus the following schemas:

(1) ¬A→ (A→ B)

(2) A→ (B→ A)

(3) (A→ B)→ ((¬A→ B)→ B)

(4) (A→ (B→ C))→ ((A→ B)→ (A→ C))

A recurrent problem is to show that the axioms are independent using the simplest
possible matrices. In [Eps00], Chapter VIII.G, some four-valued matrices are used
to prove independence of these axioms. It should be noted however that the model
proposed for proving independence of Axiom (2) is wrong: indeed, the suggested ta-
ble does not respect modus ponens2. Moreover, the independence of Axiom (1) and
Axiom (3) uses the unnecessarily complicated four-valued models.

We show here that it is possible to employ two- and three-valued models to show in-
dependence of Axioms (1), (2) and (3), but no three-valued model can separate Axiom
(4).

I. Independence of Axiom (1):¬A→ (A→ B)

Consider the tables for implication and negation given by the three-valued para-
consistent calculusP1 (introduced in [Set73]), where 0 and 1 are distinguished
(designated) truth-values:

→ 0 1 2
0 0 0 2
1 0 0 2
2 0 0 0

¬

0 2
1 0
2 0

Axioms (2) and (4) are also axioms ofP1.

It is easy to check that Axiom (1)¬A→ (A→ B) is also validated.

To see that Axiom (1) can be assigned value 2, just assign value 1 toA and 2 to
B (in shorthand,¬1→ (1→ 2) = 0→ (1→ 2) = 2).

2This observation is due to Rodrigo Freitas at CLE- UNICAMP
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Is it possible to employ smaller (in this case, two-valued) models? For this ax-
iom, the answer is positive: we will reproduce some two-valued models given in
[Fla78], where 0 as the distinguished value:

→ 0 1
0 0 1
1 0 0

¬

0 0
1 0

II. Independence of Axiom (2):A→ (B→ A)

Consider the tables for implication3 and negation given below, where 0 and 1
are distinguished truth-values:

→ 0 1 2
0 1 2 2
1 1 1 2
2 1 1 1

¬

0 2
1 2
2 1

Again axioms (1) , (3) and (4) are validated by these tables, while Axiom (2) can
be assigned value 2: just assign value 0 toA and 2 toB (in shorthand, 0→ (2→
0) = 0 → 1 = 2). Is it possible in this case, to simplify the models? We do
not know the answer; weconjecture that no two=valueid models is able to show
independence of axiom Axiom (2).

III. Independence of Axiom (3): (A→ B)→ ((¬A→ B)→ B)

Consider the tables for implication and negation given by the three-valued para-
complete calculusI1 (introduced in [SC95]), where 0 is the only distinguished
truth-value:

→ 0 1 2
0 0 2 2
1 0 0 0
2 0 0 0

¬

0 2
1 2
2 0

Again axioms (2) and (4) are also axioms ofI1. It is easy to check that Axiom
¬A → (A → B) is also validated byI1 tables. To see that Axiom (3) can be
assigned value 2, just assign value 1 toA and 2 toB (in shorthand, (1→ 2) →
((¬1→ 2)→ 2) = (1→ 2)→ ((2→ 2)→ 2) = 2).

Again, in this case the models can be simplified to two-valued, taking 0 as the
distinguished value (cf.[Fla78]):

→ 0 1
0 0 1
1 0 0

¬

0 1
1 1

3Tables obtained with the help of the program MaGIC: (“Matrix Generator for Implication Connectives”).
Thanks to John Slaney
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IV. Independence of Axiom (4): (A→ (B→ C)) → ((A→ B) → (A→ C)) We use
the four -valued tables given in [Eps00] Chapter VIII.G (due to George Hughes):

→ 1 2 3 4
1 1 2 3 4
2 1 1 3 1
3 1 2 1 2
4 1 1 1 1

¬

1 4
2 3
3 2
4 1

Again axioms (1), (3) and (4) are validated by these tables, while Axiom (2) can
be assigned value 2: just assign value 2 toA, 4 to B and 3 toC (in shorthand,
(2→ (4→ 3))→ ((2→ 4)→ (2→ 3)) = 3).

In this case, however, no model with less than four truth-values is able to guarantee
independence of Axiom (4), as shown in next section.

4 An incapacity of two-valued and three-valued models

As we saw in the previous section, Axioms (1), (2) and (3) can be proven to be inde-
pendent by means of three-valued models, and (4) by means of a four-valued modus
ponens. An interesting question is the following: is it possible to use a three-valued
matrix instead? I show below that this is impossible: no three-valued model is sufficient
to show the independence of Axiom (4):

(A→ (B→ C))→ ((A→ B)→ (A→ C))

I first show some consequences obtained from Axioms (1), (2) , (3) and (MP) which
will be helpful to establish the conditions for any possible three-valued model.L be
the subclassical logic defined by Axioms (1), (2) , (3) and (MP); ` A indicates thatA
is a theorem ofL , andA a` B indicated thatA andB are mutually derivable inL .

Proposition 4.1. (a) ` A→ A

(b) ` A→ ¬¬A

(c) A→ (A→ B) ` (A→ B)

Proof. For (a):
1. ¬A→ (A→ A) [ Ax 1 ]
2. A→ (A→ A) [ Ax 2 ]
3. (A→ (A→ A))→ ((¬A→ (A→ A))→ (A→ A)) [ Ax 3 ]
4. > → (ϕ→ >) [ MP 2, 3 ]
5. A→ A [ MP 1, 4 ]

For (b):
1. ¬A→ (A→ ¬¬A) [ Ax 1 ]
2. ¬¬A→ (A→ ¬¬A) [ Ax 2 ]
3. ¬A→ (A→ ¬¬A)→ [(¬¬A→ (A→ ¬¬A))→ (A→ ¬¬A)] [ Ax 3 ]
4. ((¬¬A→ (A→ ¬¬A))→ (A→ ¬¬A)) [ MP 2, 3 ]
5. A→ ¬¬A [ MP 1, 4 ]
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For (c):
1. A→ (A→ B) [ Hyp. ]
2. ¬A→ (A→ B) [ Ax 1 ]
3. A→ (A→ B)→ [(¬A→ (A→ B))→ (A→ B)] [ Ax 3 ]
4. [(¬A→ (A→ B))→ (A→ B)] [ MP 1, 3 ]
5. A→ B [ MP 2, 4 ]

�

Let M be any model forL interpreting→ and¬, 4 let D andND be the (non-empty)
sets of, respectively, distinguished and non-distinguished truth-values ofM. Then the
following properties hold (whered, d′ are any distinguished truth-values, andn, n′ are
any non-distinguished truth-values, andx is any truth-value):

Proposition 4.2. Let M be any model forL of any cardinality, then:

(a) x→ d ∈ D

(b) d→ n ∈ ND

(c) x ∈ D iff ¬¬x ∈ D

Proof. For (a): Axiom (2) guarantees thatd→ (x→ d) ∈ D; by MP, x→ d ∈ D.

For (b): If d→ n ∈ D, by MPn ∈ D, absurd.

For (c): If x ∈ D then¬¬x ∈ D by Proposition 4.1 (b).
Conversely, if¬¬x ∈ D, since¬¬x → (¬x → x) ( by Axiom (1)), it follows

that (¬x → x) ∈ D. Also, (x → x) ∈ D. ( by Proposition 4.1), but by Axiom (3)
(x→ x)→ ((¬x→ x)→ x) ∈ D. and by MPx ∈ D. �

Proposition 4.3. Let M be a three-valued model forL, then x∈ D iff ¬x ∈ ND.

Proof. From to right: suppose thatx ∈ D and¬x ∈ D for somex; then by Axiom (1),
¬x→ (x→ n) ∈ D, and consequently, by MP,n ∈ D, absurd.

The converse requires a more involved combinatorial argument. Suppose that, for
somex, x ∈ ND and¬x ∈ ND. The argument has to be divided into two cases:

Case 1: Suppose|D| = 2. Then there is just onex in ND, and as by hypothesis
x = ¬x = n ∈ ND, we obtain (x→ x) = (¬x→ x) ∈ D by Proposition 4.1, and
thus, since by Axiom (3) (x→ x)→ ((¬x→ x)→ x) ∈ D, thenx ∈ D, absurd.

Case 2: Suppose|D| = 1. In this case, by the left-to-right part above,¬d ∈ D and
ND = {n,n′}. Suppose¬d = n: I will show that¬n = n′ = d. Indeed,¬n , n,
for otherwise we get the same contradiction as in Case 1. So, if¬n , d, then
¬n = n′, and thus¬¬d = ¬n = n′, a contradiction with item (c) above. Hence
¬n = d.

It remains to be shown that¬n′ = d. If not, since again¬n′ , n′ for the same
reason as above, then¬n′ = n. But in this case¬¬n′ = ¬n = d, again a
contradiction with item (c) above. Hence¬n′ = d.

4As usual, we are employing the same symbols→ and¬ for the connectives and their interpretation
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Therefore in any cases ifx ∈ ND then¬x ∈ D what establishes the converse.�

I now show that such conditions eliminate all possible three-valued models that can
falsify Axiom (4) while satisfying the other axioms.

Proposition 4.4. Any two-valued or three-valued models that satisfy Axioms (1)-(3)
also satisfies the schema(A→ (B→ C))→ ((A→ B)→ (A→ C))

Proof. It is almost immediate to see that any two-valued models will be excluded as
showing the Independence of the schema (A→ (B→ C)) → ((A→ B) → (A→ C)).
Indeed, in any two-valued models the truth-values ofA andB, A andC or B andC will
coincide.

If the truth-values ofA and B coincide, it is impossible to disprove the schema
(A → (A → C)) → ((A → A) → (A → C)), since Proposition 4.2 implies that this
would only be possible if (A→ (A→ C)) is distinguished and ((A→ A) → (A→ C))
is not, but by Proposition 4.1 (c) and Axiom (2)A→ (A→ B) ` (A→ A)→ (A→ C),
a contradiction.

If the truth-values ofA andC coincide, it is impossible to disprove the schema
(A → (B → A)) → ((A → B) → (A → A)), as a consequence of Proposition 4.1 (c)
and Axiom (2). If the truth-values ofB andC coincide, it is impossible to disprove
the schema (A → (B → B)) → ((A → B) → (A → B)), again as a consequence of
Proposition 4.1 (c) and Axiom (2). This takes care of the two-valued cases.

Suppose now thatM is a possible three-valued model for Axiom (1), (2) and (3),
and closed under MP, such thatM falsifies Axiom (4). InM, the table for will have the
following structure (under convenient permutation of rows and lines, and where entries
D and ND in the tables mean any, respectively, distinguished or non-distinguished
truth-value):

Case 1:|D| = 2
As a consequence of Proposition 4.2 (a), (b) and (c), and noticing thatn→ n ∈ D
by Proposition 4.1, we have:

→ d d′ n
d D D n
d′ D D n
n D D D

Case 2:|D| = 1
As a consequence of Proposition 4.2 and Proposition 4.3, and again noticing that
n→ n ∈ D andn′ → n′ ∈ D by Proposition 4.1, we have:

→ d n′ n
d d ND ND
n′ d d ?
n d ? d

It is clear thatn′ → n = d andn→ n′ = d. Indeed, suppose thatn′ → n ∈ ND.
By Axiom (1) ¬n′ → (n′ → n) ∈ D. Also, by Proposition 4.3¬n′ ∈ D, and
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thus by Proposition 4.2 (c)¬n′ → (n′ → n) ∈ ND, a contradiction. A similar
argument shows thatn→ n′ = d.

The schematic table can now be determined as:

→ d n′ n
d d ND ND
n′ d d d
n d d d

It remains to be shown that neither the first nor the second schematic tables can
falsify Axiom (4): Indeed.

(i) By hypothesis, (A→ (B→ C))→ ((A→ B)→ (A→ C)) ∈ ND;

(ii) From (i) and the table, (A→ (B→ C)) ∈ D, (A→ B)→ (A→ C) ∈ ND;

(iii) From (A → B) → (A → C) ∈ ND, (ii) and the table, (A → B) ∈ D,
(A→ C) ∈ ND;

(iv) From (A→ C) ∈ ND (iii) and the table,A ∈ D, C ∈ ND;

(v) FromA ∈ D and (A→ B) ∈ D it follows by MP thatB ∈ D

(vi) From B ∈ D (v) andC ∈ ND (iv) it follows from Proposition 4.2 (c) that
(B→ C) ∈ ND, FromA ∈ D (iv) and (B→ C) ∈ ND (vi) it follows from
Proposition 4.2 (c) that (A → (B → C)) ∈ ND, absurd (as it contradicts
(ii)).

Hence there are no three-valued matrices that can falsify Axiom (4) . �

The same techniques of this section can be adapted to study the relative incapacitiy
of other many-valued models. Although some well-known results of Gödel, Dugundji,
Dummett and Harrop show that there are many decidable propositional logics (even
subsystems of classical logic) that cannot be characterized by finite matrices, an inde-
pendent interesting problem is the following: Is there a sequenceLk of propositional
logics such that, for eachn, there existsL in Lk such that the independence of axioms
in L cannot be characterized byn-valued finite matrices, but can be by (n+ 1)-valued
finite matrices?

We conjecture that this is true; the interest of this type of property is that, in such
cases, the universe ofn-valued finite matrices (when closed under certain conditions)
has some intrinsic hidden structures, as Proposition4.4 reveals for the case of 3-valued
finite matrices.

5 The systemQ of Mostowski-Robinson: models for
Arithmetic

If we take as axioms the inductive definitions of addition and multiplication and the
ones that say that successor (on non-zero numbers) is a 1-1 function, we obtain the
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axiom systemQ for first-order arithmetic. The arithmetic axioms ofQ are due to
Raphael Robinson, in 1950; for the history see [TMR53],p.39.

The partial recursive functions are the smallest class of functions containing zero,
successor, the projections, addition, multiplication, and the characteristic function for
equality and closed under composition and theµ-operator. It is well-known that all the
recursive functions are representable inQ and the representable functions are closed
under composition and theµ-operator. This makes possible to translate the numeri-
cal versions of assertions about mathematical systems containing a certain amount of
artithmetic back into the system itself, what is an essential ingredient for proving the
celebrated Theorems of Gdel.

The system ofQ plays an extremely important role in logic and model theory.
Because the recursive functions are representable in the formal systemQ, we obtain
that the set of theorems ofQ is undecidable. Moreover, by adding the axiom schema
of induction toQ, we obtain Peano ArithemeticPA, and the Second Incompletenss
Theorem of Gdel shows thatPA cannot prove its own consistency.

In [EC00], chapters 21 and 22, it is carefully shown that all the recursive functions
can be represented using the proof machinery ofQ, and chapters 23 and 24 treat the
Theorems of Gdel in full detail, what is not our objective here: our objective is to show
how, using finitely-presented methods, we can show whatcannotbe proved inQ.

Alfred Tarski, Andrzej Mostowski, and Raphael Robinson generalized the ideas
underlyingQ, developing some techniques for showing that several theories are unde-
cidable. This is known in the literature as ’Tarski-Mostowski-Robinson theorem’, but it
is also recognized that Myhill and Bernays had previiysly contributed to it. The Tarski-
Mostowski-Robinson results can be used show the undecidability of several important
algebraic theories, as the elementary theories of rings, commutative rings, integral do-
mains, ordered rings, ordered commutative rings, and the elementary theory of fields.

The Tarski-Mostowski-Robinson theorem shows that, if we have shown that a given
theory is decidable and thatM is a model of that theory, then the set of natural numbers
cannot be defined in the modelM. For example, ifM is the model in the language of
arithmetic whose domain is the real numbers, a famous theorem of Tarski proves that
the set of sentences true in this model is decidable; consequently, it follows from the
Tarski-Mostowski-Robinson theorem that the set of natural numbers cannot be defined
in this modelM. All this is very similar to the argument that shows thatQ is undecid-
able, and, however,Q is so weak that it does not prove several arithmetical properties
that we consider to be obvious.

We assume the inductive definitions of addition in terms of successor, and of multi-
plication in terms of addition and successor, and that the successor symbol defines a 1-1
function whose range is everything but zero. The formal system for first-order arith-
metic Q is the following, taking for granted the usual proof machinery of first-order
logic (for detail, see [EC00] chapter 21):

Q1 (x′1 ≈ x′2)→ x1 ≈ x2

Q2 0 , x′1

Q3 (x1 , 0)→ ∃x2(x1 ≈ x′2)
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Q4 x1 + 0 ≈ x1

Q5 x1 + (x2)′ ≈ (x1 + x2)′

Q6 x1 · 0 ≈ 0

Q7 x1 · (x2)′ ≈ (x1 · x2) + x1

Note thatQ1-Q7 are (abbreviations of) wffs, not schemas.
All the theorems ofQ are supposed to true of the natural numbers. We shall assume

thatQ has the syntactic property of being consistent : there is no wff A such that both
`Q A and`Q ¬A.

6 Proving the weakness of the systemQ

Although the systemQ formalizes a sufficient amount of properties of the natural num-
bers to be able to represent every recursive function, the system is not strong enough
to prove many basic facts of arithmetic. For example, even a simple a wff as x , x′

cannot be proved inQ. But wow can we demonstrate that? We know how to show a
wff is a theorem: exhibit a proof. But how can we show that there isnoproof?

We shall see here that the idea of “finitely-presented models” in some sense than
helps to show how some arithmetic properties fail to be proved inQ. We are not us-
ing strictly finite models here, but finitely-presented models in the sense of models
described by finite tables.

Suppose we can exhibit something which satisfies all the axioms of the systemQ,
that is, a model ofQ. The rules of proof never lead us from wffs that are true about
something to ones that are false, so every theorem ofQ must also be true in that model.
Thus all we have to do is show something that satisfies all the axioms ofQ and yet
x , x′ is false in it. Thenx , x′ cannot be a theorem ofQ.

To present such a model we need two objects which are not natural numbers. Any
two will do; for example, the Moon and the Sun, or beer mugs, as Hilbert used to say,
If we label themα andβ, the model then consists of the natural numbers supplemented
by α andβ with the following tables interpreting′, +, · :

+ n α β

m m+ n β α

α α β α

β β β α

′ sucessor of x
n n+ 1
α α

β β

× 0 n , 0 α β

0 0 0 α β

m, 0 0 m · n α β

α 0 β β β

β 0 α α α

To show that this is a model ofQ we have to assume that the axioms and hence
theorems ofQ are true of the natural numbers. Then it’s easy to verify that they are
also true when we haveα andβ. But the successor ofα is α, and hencex , x′ cannot
be a theorem ofQ.

Here is a list of wffs all of which are true of the natural numbers but cannot be
proved inQ (that i,s they are independent ofQ). This can be verify using the same
model.
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Theorem 6.1. If the theorems ofQ are true of the natural numbers, then the following
are not theorems ofQ, where x, y, z are distinct variables (parentheses deleted for
legibility):

a x , x′

b x+ (y+ z) ≈ (x+ y) + z

c x+ y ≈ y+ x

d 0+ x ≈ x

e ∃x(x′ + y ≈ z)→ y , z

f x · (y · z) ≈ (x · y) · z

g x · y ≈ y · x

h x · (y+ z) ≈ (x · y) + (x · z)

i x · 1 ≈ x

Proof. The counter-examples given by the tables above are the following:

a α′ = α

b α + (α + α) = α + β = α , β = β + α = (α + α) + α

c α + β = α , β = β + α

d 0+ α = β , α

e β′ + α = β + α andα′ + β = α + β = α.
Intuitively, the wff says “not bothy is less thanz andz is less thany”

f α · (α · α) = α · β = β , α = β · α = (α · α) · α

g α · β = β , α = β · α

h α · (α + α) = α · β = β , α = β + β = (α · α) + (α · α)

i α · 1 = β , α

�

It is possible to use finite models instead of these finitely-presented models to show
the independence of the above wffs?

Yes, at least in some cases. For example, to show the independence ofx · 0 ≈ 0
from Q we may use the following three-valued table:

+ 0 1 2
0 0 1 2
1 1 0 2
2 2 2 2

× 0 1 2
0 0 0 2
1 0 1 2
2 2 2 2

We do not know if it is possible to give finite models for the independence of all
the wffs above; sometimes it us easier to use infinite rather than finite models !
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7 Tarski’s High School Problem and exotic identities

The high school identities is the setHSI of eleven basic identities of the positive inte-
gersN with the operations sum (+), product (×) and exponentiation (↑) that everyone
learns in high school:

1. x+ y ≈ y+ x

2. x+ (y+ z) ≈ (x+ y) + z

3. x× 1 ≈ x

4. x× y ≈ y× x

5. x× (y× z) ≈ (x× y) × z

6. x× (y+ z) ≈ (x× y) + (x× z)

7. 1x ≈ 1

8. x1 ≈ x

9. x(y+z ≈ xy × xz

10. (x× y)z ≈ xz × yz

11. (xy)z ≈ xy×z.

The subset of the first six identities not involving exponentiation is called̂HSI.
These identities are derived from the natural numbers with the successor operation

(see Section 6) and are among the most familiar of the equational theories in mathe-
matics.

Alfred Tarski asked whetherHSI was a basis for the equational theory ofN, a
problem known asTarski’s High School Problem. A nice exposition of the problem
can be fond in [BY])

In 1980, Alex Wilkie (cf. [Wil00]) provided a negative answer to Tarski’s High
School Problem, obtaining the firstexotic identity W(x, y),that is, an identity not prov-
able fromHSI:

W(x, y) = ((1+ x)x + ((1+ x+ x2)x)y) × ((1+ x3)y + (1+ x2 + x4)y)x ≈ ((1+ x)y +

(1+ x+ x2)y)x × ((1+ x3)x + (1+ x2 + x4)x)y

Though it may very hard to find such counter-example, a simple proof of this result
can be given by the existence of finite models ofHSI that do not satisfyW(x, y). The
first such example was founded by Gurevič (cf. [Gur85]), who gave an extremely
complicated algebra with 59 elements (Wilkie’s proof was syntactic).

Many smaller counter-models have been found since this first model. Even today it
is now known what is the size of smallest counterexample showing the independence
of W(x, y), but a model with 12 elements was found (cf. [BY]):
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+ 1 2 3 4 a b c d e f g h
1 2 3 4 4 2 3 d 3 3 3 3 4
2 3 4 4 4 3 4 3 4 4 4 4 4
3 4 4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4 4 4
a 2 3 4 4 b 4 b 3 h 3 3 4
b 3 4 4 4 4 4 4 4 4 4 4 4
c d 3 4 4 b 4 b 3 3 3 3 4
d 3 4 4 4 3 4 3 4 4 4 4 4
e 3 4 4 4 h 4 3 4 4 3 h 4
f 3 4 4 4 3 4 3 4 3 4 3 4
g 3 4 4 4 3 4 3 4 h 3 4 4
g 4 4 4 4 4 4 4 4 4 4 4 4

∧ 1 2 3 4 a b c d e f g h
1 1 2 3 4 a b c d e f g h
2 2 4 4 4 b 4 b 4 4 4 4 4
3 3 4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4 4 4
a a b 4 4 c b c b h 4 4 4
b b 4 4 4 b 4 b 4 4 4 4 4
c c b 4 4 c b c b 4 4 4 4
d d 4 4 4 b 4 b 4 4 4 4 4
e e 4 4 4 h 4 4 4 4 4 h 4
f f 4 4 4 4 4 4 4 4 4 4 4
g g 4 4 4 4 4 4 4 h 4 4 4
h h 4 4 4 4 4 4 4 4 4 4 4

∗ 1 2 3 4 a b c d e f g h
1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 4 4 4 4 4 4 4 f 4 4 4
3 3 4 4 4 e 4 4 4 g 4 e h
4 4 4 4 4 4 4 4 4 4 4 4 4
a a c c c c c c c c c c c
b b 4 4 4 4 4 4 4 4 4 4 4
c c c c c c c c c c c c c
d d 4 4 4 f 4 4 4 4 4 4 4
e e 4 4 4 4 4 4 4 h 4 4 4
f f 4 4 4 4 4 4 4 4 4 4 4
g g 4 4 4 h 4 4 4 4 4 h 4
h h 4 4 4 4 4 4 4 4 4 4 4

After Wilkie’s discovery of his exotic identity there was an effort to find smaller iden-
tities, but nobody knows which is the simplest one. Also, it is conjectured that this
model with 12 elements is minimal: the lower bound is 8, as shown in [Jac96]. There
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is still a lot of work to settle the smallest exotic identity and the exact cardinality of the
minimal model.

8 The Finite Basis Problem and weird small models

An algebra (or analgebraic structure) is a mathematical object
A =< A,o1, . . . ,øn,R1, . . . ,Rm >
consisting of a non-empty setA (the universe of the algebra) together with a finite col-
lection of operationso1, . . . ,øn and relationsR‘1, . . . ,Rm defined on the setA. When
the the universeA of the algebra is finite we say it is afinite algebra. When the oper-
ations are zero-ary, the algebras has constants (as it happens with Boolean algebras).
When there is no risk of confusion, the algebraA is sometimes denoted by its universe
A.

An algebra my be defined by requiring that it satisfies certain axioms, or by spec-
ifying the operations and relations. This is specially interesting in the case of small
finite algebras, and is done by means of theCayley tables.

A Cayley table is like the familiar tables for multiplication or addition, but gen-
eralized to arbitrary algebraic operations. Cayley tables are extremely useful in the
description of small finite algebras that have binary operations; almost all many-valued
logics in the literature use Cayley tables to specify the interpretation of logical connec-
tives. So the study of many-valued logics is a sense part of (or a complement of) the
study of finite algebras.

Examples of algebras are groups, rings, fields, vector spaces, Boolean algebras, etc.
In these cases the algebras are defined by requiting that they satisfy specific axioms.

A groupoid is an algebraic structure on a set closed under a binary operator? (i.e.,
applying the binary operator to two elements of a given setS returns a value inS). No
other property such as associativity, commutativity, etc., are required in a groupoid.

Aquasigroup is a groupoidS such that for alla,b ∈ S there exist uniquex, y ∈ S
such that:a? x = b andy? a = b

No other restrictions are posed; thus a quasigroup need not have an identity ele-
ment, not be associative, etc. Quasigroups are precisely groupoids whose multiplica-
tion tables areLatin squares: in each row and each column of the table each element
of S occurs exactly once.

For example:
? 0 1 2
0 0 1 2
1 2 0 1
2 1 2 0

There are 12 Latin squares of order 3, and only two Latin squares of order 2:

~∨· 0 1
0 1 0
1 0 1

≡ 0 1
0 0 1
1 1 0
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that correspond toexclusive disjunction ~∨·andequivalence ≡in binary (classical)
logic reading 0 forfalseand 1 fortrue.

A semigroup is an associative groupoid, i.e., a grupoid where the binary operator
in which the multiplication operation is associative. No other restrictions are placed
on a semigroup; thus a semigroup need not have an identity element and its elements
need not have inverses within the semigroup. A semigroup with an identity is called a
monoid.

For people with interest in category theory, it is worth noting that monoids can
be viewed essentially as categories with a single object, since the axioms required
for a monoid operation are exactly those required for morphism composition when
restricted to endomorphisms (i.e., to the set of all morphisms starting and ending at a
given object).

For example, the following is a semigroup (which happens to be also commutative):

? 0 1 2
0 1 1 0
1 1 1 1
2 0 1 2

It is easy to check that the equationsx?(y?z) ≈ (x?y)?z(and also thatx?y ≈ y?x)
hold for all elementsx, y andz.

Equations that hold identically (such as the above) on an algebra are said to be
satisfied by the algebra.

Given a set of identitiesS, a basis (or an axiomatic basis of identities ) for the
identities is a subset ofS0 of S from which all the identities inS can be derived (by
means of the usual ways that equations derive other equations; this has a technical
meaning, however, that is explained in universal algebra). IfS0 is finite, we say that
the identities of A arefinitely based (or finitely axiomatizable).

A finite algebra is said to beinherently non-finitely based if it is not finitely based,
and any algebra that contains it is also not finitely based (this can be rephrased in the
language of universal algebra by the fact that any locally finite variety containing it is
not finitely based).

Tarski’s Finite Basis Problem is the general question, posed by him around 1960,
of deciding whether an arbitrary finite algebra can be finitely axiomatizable. Ralph
McKenzie solved this hard problem in 1995(cf. [McK96]) showing that there is no
algorithm for determining which finite algebras (defined by finitely many fundamental
operations) ate finitely axiomatizable. So, in the absence of an algorithm, the problem
has to be dealt in a case-by-case basis. For example, it is known that every finite group,
every finite ring and every commutative semigroup is finitely axiomatizable (or finitely
based).

The first example of an finite algebra whose identities cannot be finitely axiomati-
zable was a 7 element groupoid found by Lyndon in 1954:
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? 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 4 5 6 0 0 0
5 0 5 5 5 0 0 0
6 0 6 6 6 0 0 0

Another example of a finite semigroup whose identities are not finitely axiomatiz-
able we given by Perkins, in 1968. This semigroup is inherently non-finitely based:

∗ 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 0 4 0 2
3 0 3 5 0 3 0
4 0 4 2 0 4 0
5 0 5 0 3 0 5

In 1965 Murskii (cf. [Mur65]) discovered a 3 element groupoid. whose identities
are be finitely axiomatizable and which is inherently non-finitely based:

? 0 1 2
0 0 0 0
1 0 1 2
2 0 2 2

It is a very instructive exercise to show that there are exactly five two-element
models ofHSI. In principle, there are (24)3 = 212 such models, but playing with the
equations it is not difficult to see that they reduce to the following:

Model I
+ 1 0
1 1 1
0 1 0

× 1 1
1 1 0
0 0 0

↑ 1 1
1 1 1
0 0 1

Model II
+ 1 0
1 1 1
0 1 0

× 1 1
1 1 0
0 0 0

↑ 1 1
1 1 1
0 0 0

Model III
+ 1 0
1 1 0
0 0 0

× 1 1
1 1 0
0 0 0

↑ 1 1
1 1 1
0 0 0
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Model IV
+ 1 0
1 0 0
0 0 0

× 1 1
1 1 0
0 0 0

↑ 1 1
1 1 1
0 0 0

Model V
+ 1 0
1 0 1
0 1 0

× 1 1
1 1 0
0 0 0

↑ 1 1
1 1 1
0 0 0

It is not an easy problem to find finite models forHSI in general (in the present
case we are using elementary counting methods). A proof that allHSI identities are
valid in every 2-elementHSI-algebra was only obtained in 2004 (cf. [Asa04]).

8.1 Relevant Internet sites

Much more on this topic an be found in the webpages maintained by Marcel Jackson
at:
http://www.maths.utas.edu.au/People/Jackson/cayley.html
and by Stanley N. Burris at:
http://www.thoralf.uwaterloo.ca/
The quasigroup completion problem concerns completing a a partially filled table in
order to obtain a complete Latin square (or a proper quasigroup multiplication table).
This is a difficult computational probme (NP-complete.

Carla Gomes maintains a webpage at:
http://www.cs.cornell.edu/Info/People/gomes/QUASIdemo.html
that demonstrates the quasigroup completion problem for 10× 10 Latin squares, using
color instead of numbers.

Jaroslav Jezek’s webpage has a program that checks whether a groupoid satisfies a
set of equations, and whether a groupoid is subdirectly irreducible:
http://adela.karlin.mff.cuni.cz/ jezek/

9 Why modal logics are not many-valued

A normal propositional modal logicis any extension of the classical propositional cal-
culus that contains, besides all classical propositional theorems, the formula:

(K ) �(p→ q)→ (�p→ �q)
and is closed under the following rules:

Modus Ponens;

Uniform substitution: if̀ α , p is a variable ofα andβ is any formula, theǹ α[β/p]
(whereα[β/p] denotes the substitution of all variablesp by β);

Necessitation (Nec): if̀ α then` �α

The smallest normal modal logic is calledK . The usual extensions ofK are defined
by adding the following axioms, where�p is defined as¬�¬p:
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(D): �p→ �p, defining the systemKD ;

(T): �p→ p, defining the systemKT or simplyT;

(B): p→ � � p, defining the systemB;

(4): �p→ ��p, defining the systemS4;

(5): �p→ ��, defining the systemS5.

A well-known theorem of 1940 due to James Dugundji proves that it is not possible to
characterize modal logics by means of finite matrices. This shows the necessity of a
new kind of semantics; Saul Kripke was the first to propose semantics for modal logics,
based on the idea of possible words (known today asKripke’s semanticsor possible
worlds semantics); we do not treat the possible-worlds semantics, as our purpose here
is to study the capability and limitations of finite models. For detailed expositions of
this semantics, we suggest [HC96] or [CP01] if you read Italian.

Clarence Lewis proposed in 1918 the first formal modal logics, although the idea
of reasoning with modalities was as old as Aristotle, and much discussed in medieval
logic. In 1932 C. Lewis and Langford publish their bookSymbolic Logic, now a classic.
Part of their motivation was to avoid the paradoxes of material implication:

- α→ (¬α→ β)

- β→ (α→ β)

- (α→ β) ∨ (β→ α)

The authors introduced the notion ofstrict implication(J) to solve such problems,
in such a way that the followings formulas are not valid:

- α J (¬α J β)

- β J (α J β)

This did not solve all problems, since for example the formula (α ∧ ¬α) J β
would still be valid. They introduced the modal systemsS4andS5(along with certain
weaker systemsS1, S2andS3) but did not know how to semantically characterize such
systems. They believed that it was possible to characterize these systems via multi-
valued semantics and tried several possibilities without success, till Dugundji’s result
proved that this was impossible.

There exists however another tradition in logic, due to Jan Łukasiewics, which
proposes a “multi-valued reading” to the modal notions of Aristotle.

Why is it so difficult to give a semantic interpretation to the modal operator (�)?
The problem is that the value of�α not depends in a complicated way upon the value
of α. Consideralpha as “Every dog is a dog”; then obviously�α is true. But ifα
is “Every dog is a pet”, it seems clear that�α is false. It is had problem for formal
semantics to distinguish between these subleties.

To demonstrate his theorem, Dugundji followed Gödel’s idea discussed above,
which shown showing that the intuitionistic logic has no finite-valued semantics. Later
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on, Gödel proved that intuitionistic logic is equivalent (inter-translatable) to the modal
logic S4.

The argument by Dugundji consists of the following points:

(a) He shows that for each matrix withn values, there exists a (modal) disjunction
with n + 1 variables (call them Dugundji’s formulas) which takes distinguished
values;

(b) He then shows that there exists an infinite matrix that assigns distinguished values
to every formula ofS5;

(d) Moreover, this infinite matrix falsifies all Dugundji’s formulas);

(d) From (a), (b)and (c) it follows that no modal systemS ⊆ S5can be characterized
by matrices with finite truth-values.

Definition 9.1. A matrixM is a tripleM = 〈M,D,O〉, where:
- M , ∅;
- D ⊆ M are the distinguished values;
- O is a set of operation.
It is clear thatM is an algebra.

Definition 9.2. A matrixcharacterizes a logic systemS if every theorem ofS (and only
them) receive distinguished values.

Fact 1 Consider the following formulas, where (x ≡ y) =De f �((x→ y) ∧ (y→ x)):

F1 p ≡ q, written in the variablesp andq;

F2 (p ≡ q) ∨ (p ≡ r) ∨ (q ≡ r), written in the variablesp, q andr;

F3 (p ≡ q) ∨ (p ≡ r) ∨ (p ≡ s) ∨ ... ∨ (r ≡ s), written in the variablesp, q, r and
s;

. . .

Fn ( n(n+1)
2 ) disjunctions inp1, · · · , pn+1 variables.

Given a matrix withn values and a formulaFn havingn+1 variables, the formula
�(p ↔ p), which is a tautology in the matrix, will appear among the disjuncts.
SinceFn is itself a disjunction, it will be true in this matrix.

Fact 2 Consider the following infinite matrixM = 〈M,D,O〉, where:

- the set of values isM = ℘(N);

- the set of distinguished values isD = {N};

- the operations areO = {∩,∪,− ,�} , such that∩,∪,− are the usual set operations
of conjunction, disjunction and complement, and

�X =

{
N if �X = N
∅ other case.

Let v : Prop −→ M = {A, B,C, . . .} be an assignment of elements ofM to
the propositional variables; this function can be extend to all formulas in the
following way:
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- v(⊥) = ∅;

- v(X ∧ Y) = v(X) ∩ v(Y);

- v(X ∨ Y) = v(X) ∪ v(Y);

- v(¬X) = v(X);

- v(�X) = �(v(X)).

Consequently, we have:v(X→ Y) = v(¬X ∨ Y) = v(A) ∪ v(B).

It is easy to proof thatM satisfies the axioms ofS5and that the rules preserve validity;
this means thatM is a model forS5(i.e.,S5 is sound with respect toM ) .

Exercise: Show thatv(�p→ p) = N, for anyv(p).

Theorem 9.3. No characteristic matrix for a subsystem ofS5can have a finite number
of truth-values.

Proof. We prove that no Dugundji’s formulaFn can receive a distinguished value in
the matrixM that satisfies the thesis ofS5.

Take the following valuationv that assigns singleton{k} to the propositional vari-
ablepk. We know thatv(p ≡ q) = �(P∪ Q) ∩ �(P∪ Q), wherev(p) = P, v(q) = Q.

Note that ifP andQ are singletons, thenP , N andQ , N. Moreover,P ⊆ Q and
Q ⊆ P, hencev(p ≡ q) = �(P)∪�(Q) = ∅, consequently, all Dugundji’s formulas take
value∅ in this matrix, i.e.,v(Fn) = ∅.

Therefore no Dugundji’s formula takes a distinguished value in the infinite matrix
that satisfiesS5, and hence these formulas cannot be theorems ofS5. However, for
each finitary matrix exists some Dugundji’s formula that is a tautology in this finitary
matrix. Therefore, this finitary matrix cannot characterizeS5.

To show that it cannot characterize a subsystemS of S5, suppose thatS can be
characterized by a finite matrix withn truth values. This finite matrix will satisfy
Dugundji’s formulaFn+1, and hence, as this matrix by hypothesis characterizesS,
Fn+1 would be a theorem ofS, and consequently a theorem ofS5, which is an absurd.

�

To conclude, this theorem shows that any finitary matrix is at most correct, but
never complete for modal logics that are subsystems ofS5.

10 Why intuitionistic logic is not many-valued

Intuitionistic logic basically criticizes the Aristotelian law of excluded middle:

(exc) α ∨ ¬α

but is happy with the law of explosion:

(exp) α→ (¬α→ β)
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).
An axiomatic system for intuitionistic propositional logicIPL is obtained precisely

by dropping (Ax9) (α ∨ (α → β)) and adding (exp) to the axiomsCPL+. This results
in a very significant departure from classical reasoning.

The founder of Intuitionism, Alois Brouwer, argued that (exc) is clearly valid in
finite situations, but its extension to statements about infinite collections would cause
problems in logical reasoning.

In a certain sense intuitionistic logic replaces truth for “justification ” in its logical
bases. Instead of a two-valued truth assignment scheme, it accepts a kind of third,
indeterminate truth-value. A proposition may be provably justified, or provably not
justified, or undetermined.

It seems obvious that intuitionistic logic would be incomplete if we maintain the
classical two=valued semantics. On the light of this interpretation via a third indeter-
minate truth-value, one may be tempted to think on the possibility of characterizing
IPL as a three-valued logic, or at least as some finite-valued logic. This is, however
impossible, as shown by G̈odel in [G3̈2].

We do not show details here, and prefer to concentrate on less known arguments
about impossibility of characterization by finite-valued matrices, as it is the case of
modal logic and paraconsistent logics (although Gödel’s arguments have inspired all
those).

It is relevant here to recall that he has used an infinite sequence of finite-valued
logics that are known today asGödel’s many-valued logics Gn, and that constitute a
family of intermediate logics between classical and intuitionistic. The truth-tables of
Gn are given by the following matrices for interpreting the signatureΣ , where the
truth-values for eachGn are Vn = {0,1, . . . ,n − 1}, and 0 is the only distinguished
value:
v(α ∧ β) = max{v(α), v(β)};
v(α ∨ β) = min{v(α), v(β)};
v(α→ β) = 0, if v(α) ≥ v(α);

v(β) otherwise;
v(¬α) = 0, if v(α) = n− 1;

n− 1 otherwise

Some years after G̈odel’s result about the impossibility of characterizingIPL as
finite-valued, S. Jáskowski in [Jas36] proved that IL can be characterized by means of
an infinite class of finite matrices.

Saul Kripke has proposed a new very interesting semantics known aspossible-
worlds semantics for which intuitionistic logic can be proven to be sound and complete.

Gödel also found a translation from classical logic into intuitionistic logic with-
out ∧ (and without∃ for the first-order case), showing that a formulaαis classically
provable iff its translationg(α) provable intuitionistically provable. In this way, if a
contradiction were classically provable, it would also be intuitionistically provable;
this was used in [G̈33] to show that intuitionistic arithmetic is as consistent as classical
arithmetic (i.e., both are equiconsistent). Based on this, and in h fact that intuitionistic
logic distinguishes formulas which are classically indistinguishible (i.e., equivalent)
he thought that intuitionistic logic is richer than classical logic. What is interesting
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form ur poitn of view is that,mutatis mutandis, the same argument is able to show that
paraconsistent logic is also richer than classical logic.

11 Why certain paraconsistent logics are not many-valued

It is well-known (cf. [Men97]), any logic having (Ax1) and (Ax2) as axioms, and
modus ponens(MP) as the only inference rule enjoys the followingDeduction Theo-
rem:5

(DT) Γ, α ` β ⇔ Γ ` α→ β

The following Theorem will be tacitly used throughout this chapter:

Theorem 11.1. (1) Any axiomatic extension of positive classical logic respects (DM);
(2) There are extensions-by-rules of positive classical logic that do not respect (DM).

Any implication enjoying (DT) and (MP) will from now be calleddeductive.
It should be noted, as proven in [BT72], that the problem of determining whether

or not the deduction theorem holds for an arbitrarily given partial implicational cal-
culus (and hence for an arbitrarily given generalized partial propositional calculus) is
recursively unsolvable.

We will consider for this section a signatureΣ containing the binary connectives∧,
∨, →, and the unary connective¬, and atomic formulasP = {pn : n ∈ ω}; Forwill
denote the set of formulas generated byP overΣ. Σ◦ will denote the signature obtained
by the addition of a new unary connective◦ to the signatureΣ, andFor◦ will denote
the formulas for the signatureΣ◦.

We first consider the simple, yet very interesting, three-valued logicPacstudied in
[Avr91]. The same logic had already appeared in [Avr86] under the nameRM⊃̃3 , and,
before that, in [Bat80], where under the name ofPIs.

Pac is given by the following matrices:

∧ 2 1 0
2 2 1 0
1 1 1 0
0 0 0 0

∨ 2 1 0
2 2 2 2
1 2 1 1
0 2 1 0

→ 2 1 0
2 2 1 0
1 2 1 0
0 2 2 2

¬

2 0
1 1
0 2

where both 1 and 2 are designated values.
In Pacthere is no formulaα such thatα,¬α `Pac β for all β, thus it is a paraconsis-

tent logic.
A classical negation can be added toPacby adding a connective interpreted by the

following matrix :
∼

2 0
1 0
0 2

5This is not always true, though, for logics extending (Ax1), (Ax2) and (MP) by the addition of new
inference rules.
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It is clear that such a negation cannot be definable from other connectives ofPac,
because any truth-function ofPac is closed within{ 12}, that is, taking this value as
input will also have1

2 as output.
In adding toPaceither a supplementing negation as above or a bottom particle, we

will obtain a well-known three-valued conservative extension of it, calledJ3. This logic
has also appeared several times independently in the literature (see [CCM], Section 2).

The expressive power of this logic was studied in [Avr99] and in [CMdA00]. The
latter paper, renaming it asLFI1 , explores the possibility of applying this logic to
databases.

we will see that three-valued logicLFI1 (or J3) is axiomatizable and sound and
complete with respect to the truth-tables given above (cf. [CMdA00]).

However, many extensions ofPacgiven by axiomatic definitions will not haveany
finite-valued semantics. We will show here in all details, closely following [CCM].

PI The paraconsistent logicPI is obtained6 from CPL+ in the signatureΣ) by adding
the axiom schema of ‘excluded middle’:

(exc) α ∨ ¬α.

mbC The logicmbC is obtained fromPI in the extended signatureΣ◦, by adding the
axiom schema:

(bc1)◦α→ (α→ (¬α→ β)).

mCi The logicmCi is obtained frommbC by the addition axiom schemas:

(ci) ¬◦α→ (α ∧ ¬α)

(co)n ◦¬n◦α (n ≥ 0).

bC The logicbC is obtained frommbC by adding the axiom schema:

(cf) ¬¬α→ α.

Ci The logicCi is obtained frommCi by adding the axiom schema (cf).

mbCe The logicmbCe is obtained frommbC by adding axiom schema:

(ce) α→ ¬¬α.

mCie The logicmCie is obtained frommCi by adding axiom (ce).

bCe The logicbCe is obtained frombC by adding axiom (ce).

Cie The logicCie is obtained fromCi by adding axiom (ce).

We show here, following the results given in [CCM] (Sections 3.3 and 4.4) that
all these paraconsistent logics cannot be characterized by truth-functional finite valued
matrices. This implies that we will have to use more sophisticated semantics. The
technique used here is inspired by the arguments of K. Göodel and J. Dugundji about
finite uncharacterizability of intuitionistic and normal modal logics, respectively, ob-
tains sufficient conditions for the paraconsistent case.

6Introduced in [Bat80].
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Theorem 11.2. Consider the following infinite-valued matrix overΣ◦ whose truth-
values are the ordinals inω + 1 = ω ∪ {ω}, of which all elements inω are designated.
The connectives ofΣ◦ are interpreted by mappingsv : For◦ // ω + 1 such that:
v(α ∧ β) = 0, if v(β) = v(α) + 1 orv(α) = v(β) + 1;

max(v(α), v(β)), otherwise;
v(α ∨ β) = min(v(α), v(β));
v(α→ β) = ω, if v(α) ∈ ω andv(β) = ω;

v(β), if v(α) = ω andv(β) ∈ ω;
0, if v(α) = ω andv(β) = ω;
max(v(α), v(β)), otherwise;

v(¬α) = ω, if v(α) = 0;
0, if v(α) = ω;
v(α) + 1, otherwise;

v(◦α) = ω, if 0 < v(α) < ω;
0, otherwise.

Let L be any logic with a negation and a deductive implication defined overΣ◦ and
extendingCPL+ which is sound with respect to the infinite-valued matrices defined
above. ThenL cannot be semantically characterized by finite-valued matrices.

Proof. Let L be any logic satisfying the given hypothesis. Define the following formu-
las overΣ◦:

ϕi j
def
== ◦pi ∧ pi ∧ ¬p j , for 0 ≤ i < j;

ψn
def
==

∨
0≤i< j≤n

(ϕi j → pn+1), for n > 0.

It is easy to see that all formulasψn can be assigned the non-designated truth-valueω
in the infinite model according to the given matrices: Just assignv(pi) = i for 0 ≤ i ≤ n
and v(pn+1) = ω. On the other hand, the formulaψn must be a tautology in every
m-valued set of matrices that is sound forL and such thatm < n. Indeed, ifm < n,
by the Pigeonhole Principle of elementary combinatorics there existi and j such that
v(pi) = v(p j). But the formula (◦α ∧ α ∧ ¬α) → β is a theorem ofL for everyα and
β, then it must be evaluated as designated in every set of adequate matrices forL . The
same occurs, of course, with the formulaα → (α ∨ β). It follows from the validity of
such formulas (and bymodus ponens) thatψn is also validated in every adequate set of
m-valued matrices which is sound forL and such thatm < n, although, as mentioned
before, no formulaψn can be a theorem ofL . Therefore,L cannot be semantically
characterized by any collection of finite-valued matrices. �

Theorem 11.3.Consider next the following infinite-valued matrix overΣ◦ whose truth-
values are the ordinals inω, of which 0 is the only non-designated value. The connec-
tives ofΣ◦ are now interpreted using mapsv : For◦ // ω such that:
v(α ∧ β) = 1, if v(α) > 0 andv(β) > 0;

0, otherwise;
v(α ∨ β) = 1, if v(α) > 0 orv(β) > 0;

0, otherwise;
v(α→ β) = 0, if v(α) > 0 andv(β) = 0;

1, otherwise;
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v(¬α) = 1, if v(α) = 0;
v(α) − 1, otherwise;

v(◦α) = 0, if v(α) > 1;
1, otherwise;

Let L be any logic with a negation and a deductive implication defined overΣ◦ and
extendingCPL+ which is sound with respect to the infinite-valued matrices defined
above. ThenL cannot be semantically characterized by finite-valued matrices.

Proof. Let L be any logic satisfying the given hypothesis, and let¬i , for i ≥ 0, denotei
iterations of the negation¬. Define the following formulas overΣ◦:

ϕi j
def
== ¬i p↔ ¬ j p, for 0 ≤ i < j.

It is easy to see that the above matrices invalidate all formulasϕi j , assigning to them
the non-designated truth-value 0: Just assignv(p) = j, and notice thatv(¬ j p) = 0
while v(¬i p) > 0. On the other hand, by the Pigeonhole Principle, anym-valued set
of matrices that is sound and complete forL will be such that, given somei, there is
somei < j ≤ (i + nn), such thatv(¬i p) = v(¬ j p), for all v. In that case,ϕi j is validated,
an absurd. Therefore,L cannot be semantically characterized by any collection of
finite-valued matrices. �

As we shall see, the above results will help to show that many paraconsistent logics
are not finite-valued. Either of them, in fact, allows us to prove, at this point:

Corollary 11.4. The parfaconsistent logicsPI, mbC, mCi, bC, Ci, mbCe, mCie bCe
andCie are not characterizable by finite matrices.

Proof. For the logicsPI andmbC, it is immediate to check that it is sound with respect
to both the matrices of Theorem 11.2 and those of Theorem 11.3. To check the result
for bCe andCie, make use of Theorem 11.2 again. For the other logics, use either the
same theorem or Theorem 11.3. �

So we have seen that, departing from the three-valued logicPacand adding appro-
priate axioms, we obtained a collection of purely infinitely-valued logics.

However, it is interesting to observe that the effect of adding new axioms exhibits
a “phase transition–shift” from cases where a new axiom maintains the uncharacter-
izability by finite matrices to those new axioms surpasses a certain threshold. This
will be precisely the case when we add certain axioms toCi for example the resulting
logic is not only again characterized by finite matrices, but even by three-valued and
two-valued matrices!

LFI1 The logicLFI1 is obtained by adding toCi the axiom schemas:

(ce) α→ ¬¬α

(cj1) •(α ∧ β)↔ ((•α ∧ β) ∨ (•β ∧ α));

(cj2) •(α ∨ β)↔ ((•α ∧ ¬β) ∨ (•β ∧ ¬α));

(cj3) •(α→ β)↔ (α ∧ •β).
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Thus the logicLFI1 is an extension ofPI by several axioms, and is sound and
complete with respect to three-valued matrices. Nonetheless, by adding just one further
axiom toPI we obtain Classical Propositional Logic, which is of course two-valued:

CPL Classical propositional logicCPL is an extension ofPI in the signatureΣ, oblig-
ing ¬ to follow the ‘explosion law’:

(exp) α→ (¬α→ β)

It is clear thatCPL+ has a two-valued semantics (given by the classical tables
that interpret classical conjunction, disjunction and implication). So we have seen that
departing from two-valued semantics and adding appropriate axioms, we fly high into
infinitely-valued semantics, fall down to three-valued, and finally back again to two-
valued.

12 Possible-translations semantics

What can we do when the logics are not characterized by finite models? It is pos-
sible, in many cases, to combine finite models in as specific so as to semantically
characterize such logics, by means of a new semantical concept known aspossible-
translations semantics. Possible-translations semantics were first introduced in 1990 in
[Car90b],with emphasis to the case of finite-valued factors. More general treatments
of possible-translations semantics can be found in [Car00]) and [Mar99] .

Possible-translations semantics can be used to assign combinations of finite-valued
semantics (indeed, in most cases just combinations of three-valued logics) to sev-
eral paraconsistent logics asPI, mbC, mCi, bC, Ci, bCe, Cie, etc., (see [CCM] and
[Mar04]). Truth-functional finite-valued logics can also be split in terms of 2-valued
logics (fragments of classical logic) as shown in [CCCM03]. According to this idea,
copies of classical logic can be combined to give semantics to modal logics.
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