Undecidability and Incompleteness are Everywhere Coppe We prove a version of Rice's Theorem for the language of classical analysis. Main points are a construction of explicit expressions for the halting function (the function that settles the halting problem) in the language of classical analysis, and extensions of those results to all complete arithmetic degrees. We extend these results to incompleteness results for several axiomatic systems. Main topics to be covered:
|
Bibliography N. C. A. da Costa and F. A. Doria, ``Janus-faced physics,'' in C. Calude, ed., From Leibniz to Chaitin, World Scientific 2007. P.Suppes, Representation and invariance of scientific structures, CSLI, Stanford, 2002 M.Tsuji, N. C. A. da Costa and F. A. Doria, The incompleteness of theories of games. J. Philos. Logic 27 (1998), no. 6, 553--568..
|